

CHI-C5-SEP

Disintegration and Density Separation Test for Plastic-based Packaging

Version 1.1

The density criterion considers the fact that float-sink sorting is the central process step to produce high-quality recyclate within plastics reprocessing. In the recycling of polyolefins only the fraction with a density of less than 0.995 g/cm³ is used to produce PO (PE, PP) recyclates.

This CHI test method was developed by cyclos-HTP for polyolefin-based (PE or PP) packaging and includes the following steps (Principle of the test method is shown in the flow chart on page 2):

1. Materials and Equipment

- a. Polyolefin-containing packaging sample with unknown composition and density
- b. Scale with accuracy of 0.01g
- c. Beaker with a volume of 1L
- d. Magnetic stirrer with heating device and thermometer
- e. Circulating air dryer

2. Disintegration

- a. Grind the samples to flakes on a lab granulator (10 mm screen) or manually with a knife or scissors and document results.
- b. Weigh test sample and report as "A"

3. Density separation (Float-Sink test)

- a. Fill a beaker with 700 ml of tap water
- b. Measure and record the water temperature and density with a hydrometer. Under standard conditions for polyolefins^A the test should be carried-out with a specific density of 0.995 g/cm³ which relates to a range of the water temperature between 30 and 34°C ^B.
- c. Stir the test sample in water with a magnetic stirrer for 2 minutes at about 500 rpm.
- d. Stop the magnetic stirrer and let the sample rest for 2 minutes; ensure that no bubbles are present at the floating particles, by demand one drop of liquid soap can be added.
- e. Remove floating particles with a sieve and record.
- f. Filter and record sinking particles.
- g. Dry floating particles in a circulating air dryer at 80°C for 2 hours.
- h. Weigh floating particles and report as "B".

4. Evaluation of results

Calculate the efficiency of the float-sink separation "SEP_f" according to the formula:

$$SEP_f = \frac{B}{4} \times 100\%$$

Version history:

Version No.	Date	Reason/Content of revision
1.0	Jan 2018	First version of test method
1.1	Sep 2021	Supplementary information on the test conditions

^A According to the Minimum Standard of the ZSVR; Version of Aug 31, 2021

^B NIST Standard Reference Database 69: NIST Chemistry WebBook, Thermophysical Properties of Fluid Systems, Isobaric Properties for Water, 2008